A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection
نویسندگان
چکیده
Background: Many investigations based on nonlinear methods have been carried out for the research of seizure detection. However, some of these nonlinear measures cannot achieve satisfying performance without considering the basic rhythms of epileptic EEGs. New method: To overcome the defects, this paper proposed a framework on wavelet-based nonlinear features and extreme learning machine (ELM) for the seizure detection. Three nonlinear methods, i.e., approximate entropy (ApEn), sample entropy (SampEn) and recurrence quantification analysis (RQA) were computed from orignal EEG signals and corresponding wavelet decomposed sub-bands separately. The wavelet-based energy was measured as the comparative. Then the combination of sub-band features was fed to ELM and SVM classifier respectively. Results: The decomposed sub-band signals show significant discrimination between interictal and ictal states and the union of sub-band features helps to achieve better detection. All the three nonlinear methods show higher sensitivity than the wavelet-based energy analysis using the proposed framework. The wavelet-based SampEn-ELM detector reaches the best performance with a sensitivity of 92.6% and a false detection rate (FDR) of 0.078. Compared with SVM, the ELM detector is better in terms of detection accuracy and learning efficiency. Comparison with existing method(s): The decomposition of original signals into sub-bands leads to better identification of seizure events compared with that of the existing nonlinear methods without considering the time–frequency decomposition. Conclusions: The proposed framework achieves not only a high detection accuracy but also a very fast learning speed, which makes it feasible for the further development of the automatic seizure detection system.
منابع مشابه
Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملA New Classification Method of Epileptic Eeg Signals Using Differential Evolution Optimally Pruned Extreme Learning Machine
An epileptic seizure is a transient event of symptoms due to abnormal neuronal action in the brain. Electroencephalography (EEG) is the neuro physiological measurement of electrical activity in the brain as recorded by electrodes placed in the cerebral cortex. An epilepsy EEG is based on three approaches. First, a scaling and wavelet function of the Multi Wavelet Transform (MWT) offers orthogon...
متن کاملAutomatic Detection of Epilepsy and Seizure Using Multiclass Sparse Extreme Learning Machine Classification
An automatic detection system for distinguishing normal, ictal, and interictal electroencephalogram (EEG) signals is of great help in clinical practice. This paper presents a three-class classification system based on discrete wavelet transform (DWT) and the nonlinear sparse extreme learning machine (SELM) for epilepsy and epileptic seizure detection. Three-level lifting DWT using Daubechies or...
متن کاملAutomatic Epileptic Seizure Detection in EEG Signals Using Multi-Domain Feature Extraction and Nonlinear Analysis
Epileptic seizure detection is commonly implemented by expert clinicians with visual observation of electroencephalography (EEG) signals, which tends to be time consuming and sensitive to bias. The epileptic detection in most previous research suffers from low power and unsuitability for processing large datasets. Therefore, a computerized epileptic seizure detection method is highly required t...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomed. Signal Proc. and Control
دوره 10 شماره
صفحات -
تاریخ انتشار 2014